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Abstract—A new evolutionary algorithm known as the shuffled
frog leaping algorithm is presented in this paper, to solve the unit
commitment (UC) problem. This integer-coded algorithm has
been developed to minimize the total energy dispatch cost over the
scheduling horizon while all of the constraints should be satisfied.
In addition, minimum up/down-time constraints have been di-
rectly coded not using the penalty function method. The proposed
algorithm has been applied to ten up to 100 generating units,
considering one-day and seven-day scheduling periods. The most
important merit of the proposed method is its high convergence
speed. The simulation results of the proposed algorithm have
been compared with the results of algorithms such as Lagrangian
relaxation, genetic algorithm, particle swarm optimization, and
bacterial foraging. The comparison results testify to the efficiency
of the proposed method.

Index Terms—Economic dispatch, generation scheduling, opti-
mization techniques, shuffled frog leaping algorithm, unit commit-
ment.

NOMENCLATURE

Number of units.

Scheduling horizon.

System load demand at hour .

System reserve at hour .

Number of operating cycles for each unit.

Duration of operating cycle for unit .

Operation status of unit at hour (
and ).

Output power of th unit at hour .

Maximum output power of th unit.

Minimum output power of th unit.

Maximum output power of th unit at hour .

Minimum output power of th unit at hour .

Maximum up-time limit of unit .
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Minimum down-time limit of unit .

Ramp-up rate of unit .

Ramp-down rate of unit .

Hot start cost of unit .

Cold start cost of unit .

Cold start hour of unit .

Start-up cost for unit .

Shutdown cost for unit .

Fuel cost.

Total cost.

Random number generator with uniform
distribution between 0 and 1.

Rounds to the nearest integer.

Unit step function.

Unit ramp function (i.e., ).

I. INTRODUCTION

U NIT COMMITMENT (UC) is used to schedule the opera-
tion of the generating units in order to satisfy load demand

such that the total system operational cost over the scheduled
horizon be minimized as subject to many system and generator
operational constraints [1]. The solution to this problem implies
a simultaneous solution of two subproblems: the mixed-integer
nonlinear programming problem of determining the generating
units to be running during each hour of the planning horizon,
considering system capacity requirements; and the quadratic
programming problem of optimally dispatching the forecasted
load among the committed units during each specific hour of
operation [2].

The exact solution to the UC problem can be obtained by
complete enumeration, which is prohibitive owing to its exces-
sive computational time requirements for realistic power sys-
tems [3]. Therefore, several solution methods have been pro-
posed to solve the unit commitment problem [4], such as pri-
ority list (PL) [5], [6], dynamic programming (DP) [7], [8],
Lagrangian relaxation (LR) [9]–[11], genetic algorithm (GA)
[12]–[17], and particle swarm optimization (PSO) [18]–[23].

The PL method is fast but highly heuristic and gives sched-
ules with relatively higher operation costs. The DP method has
the advantage of being able to solve problems of a variety of
sizes [8]. But it may lead to more mathematical complexity and
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increase in computation time, if the constraints are taken into
consideration [24].

The LR method is capable of solving large-scale UC prob-
lems within short execution times [25]. It has the advantage of
being easily modifiable to model characteristics of specific util-
ities and can be considered unit constraints relatively easy. The
main disadvantage of this method is its inherent suboptimality.

Evolutionary algorithms (EAs), such as GA and PSO, are sto-
chastic search methods. GA has been implemented by various
researchers for the solution of UC problem. However, the dis-
advantage of this method is its long execution time, and there is
no guarantee it will converge to the optimal solution.

The usual reported GA implementations on the UC problem
are based on the binary coding. However, the formulation and
implementation are difficult in arriving at an optimal solution.
Other coding schemes such as integer [17] or floating point can
be more efficient when accompanied with suitable GA opera-
tors [26].

In solving the UC problem by PSO, the particles do not re-
quire any repair strategies for satisfying the constraints without
disturbing the optimum process of the PSO. As a result, the al-
gorithm is capable of efficiently exploring the search space and
generating quality solutions. The comparison results show that
the PSO is more efficient than GA, which could obtain the global
optimum solution more probably.

In this paper, a new integer-coded evolutionary algorithm
known as shuffled frog leaping algorithm (SFLA) is used to
solve the UC problem.

II. SHUFFLED FROG LEAPING ALGORITHM

The SFLA is a meta-heuristic optimization method which
is based on observing, imitating, and modeling the behavior
of a group of frogs when searching for the location that has
the maximum amount of available food [27]. SFLA, originally
developed by Eusuff and Lansey in 2003, can be used to solve
many complex optimization problems, which are nonlinear,
nondifferentiable, and multi-modal [28]. SFLA has been suc-
cessfully applied to several engineering optimization problems
such as water resource distribution [29], bridge deck repairs
[30], job-shop scheduling arrangement [31], and traveling
salesman problem (TSP) [32]. The most distinguished benefit
of SFLA is its fast convergence speed [33]. The SFLA combines
the benefits of the both the genetic-based memetic algorithm
(MA) and the social behavior-based PSO algorithm [34].

In SFLA, there is a population of possible solutions defined
by a set of virtual frogs partitioned into different groups which
are described as memeplexes, each performing a local search.
Within each memeplex, the individual frogs hold ideas, which
can be infected by the ideas of other frogs. After a defined
number of memetic evolution steps, ideas are passed between
memeplexes in a shuffling process. The local search and the
shuffling process continue until the defined convergence criteria
are satisfied [33], [35].

The flowchart of SFLA is illustrated in Fig. 1. In the first step
of this algorithm, an initial population of frogs is randomly
generated within the feasible search space. The position of the

Fig. 1. Flowchart of SFLA.

th frog is represented as , where
is the number of variables. Then, the frogs are sorted in de-

scending order according to their fitness. Afterwards, the entire
population is partitioned into subsets referred to as meme-
plexes, each containing frogs (i.e., ). The strategy
of the partitioning is as follows: the first frog goes to the first
memeplex, the second frog goes to the second memeplex, the

th frog goes to the th memeplex, the th frog goes
back to the first memeplex, and so forth. In each memeplex, the
positions of frogs with the best and worst fitnesses are identified
as and , respectively. Also the position of a frog with the
global best fitness is identified as . Then, within each meme-
plex, a process similar to the PSO algorithm is applied to im-
prove only the frog with the worst fitness (not all frogs) in each
cycle. Therefore, the position of the frog with the worst fitness
leaps toward the position of the best frog, as follows:

(1)

(2)

where and are the maximum and minimum step
sizes allowed for a frog’s position, respectively.
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Fig. 2. Flowchart of local search.

If this process produces a better solution, it will replace the
worst frog. Otherwise, the calculations in (1) and (2) are re-
peated but is replaced by . If there is no improvement
in this case, a new solution will be randomly generated within
the feasible space to replace it. The calculations will continue
for a specific number of iterations [30], [33]. Therefore, SFLA
simultaneously performs an independent local search in each
memeplex using a process similar to the PSO algorithm. The
flowchart of local search of SFLA is illustrated in Fig. 2.

After a predefined number of memetic evolutionary steps
within each memeplex, the solutions of evolved meme-
plexes are replaced into new population.

; this is called the
shuffling process. The shuffling process promotes a global
information exchange among the frogs. Then, the population
is sorted in order of decreasing performance value and updates
the population best frog’s position , repartition the frog
group into memeplexes, and progress the evolution within each
memeplex until the conversion criteria are satisfied. Usually,
the convergence criteria can be defined as follows [36]:

• The relative change in the fitness of the global frog within
a number of consecutive shuffling iterations is less than a
pre-specified tolerance.

• The maximum predefined number of shuffling iteration has
been obtained.

III. UC PROBLEM FORMULATION

The total operating cost of the UC problem is expressed as the
sum of fuel costs, start-up costs, and shutdown costs of the gener-
ating units [3]. The fuel cost is the major component of the oper-
ating cost, which isnormally modeled by a quadratic input/output
curve. The start-up costs are expressed by an exponential or
linear function of time [3]. In this paper, start-up costs are mod-
eled as a two-valued (hot start/cold start) staircase function [12].

The system and unit constraints, which must be satisfied
during the optimization process, are as follows:

• The unit initial operation status.
• The minimum up and down times: The minimum up/down-

time constraints indicate that a unit must be ON/OFF for
a minimum time before it can be shut down or restarted,
respectively. These constraints are expressed by the fol-
lowing equations:

if
if

(3)

where is a sign integer that represents the continuous
ON/OFF status duration of the th cycle of unit . The sum
of for each unit must be equal to the scheduling horizon,
i.e.,

(4)

• The upper and lower limits of the th generation unit, as
follows:

(5)

• The ramp up and down rates: Considering the response rate
constrains of the unit, the power generation of the unit is
limited by the following time-dependent operating limits:

(6)

(7)

where is equal to 60 min and it is the UC time step.
• The power balance of the power system is presented by the

following equation:

(8)
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TABLE I
CONFIGURATION OF X FOR TEN-UNIT SYSTEM

Fig. 3. Base-load, medium-load, and peak-load operating cycles.

• The spinning reserve (10-min) of the power system: The
spinning reserve is the total amount of the real power gen-
eration available from all operated units minus the present
load. It has to satisfy the following equation:

(9)

where is the 10-min maximum response rate con-
strained power generation of the th unit, and is defined by
(6) with .

IV. APPLICATION OF SFLA ON UC PROBLEM

A. Frog (Solution) Definition

In the integer coded SFLA, the frog position consists of
a sequence of integer numbers, representing the sequence of the
ON/OFF cycle durations of each unit during the UC horizon. A
positive integer in the represents the duration of continuous
unit operation (ON status), while a negative integer represents
the duration of continuous reservation (OFF status) of the unit.
The number of a unit’s “ON/OFF” cycles during the UC horizon
depends on the number of load peaks during the UC horizon and
the sum of the minimum up and down times of the unit [17].
Fig. 3 shows a daily load profile with two load peaks used to
determine the number of ON/OFF cycles of units.

The numbers of ON/OFF cycles of the base, medium, and
peak load units are equal to 2, 3, and 5, respectively. There-
fore, the number of ON/OFF cycles of generating units is usu-
ally small (1 to 5 ON/OFF cycles per day). The reduction of
cycles of base and medium units may restrict the search space
of the optimization problem and this may lead to suboptimal
solutions [17]. To overcome this problem in the proposed algo-
rithm, the number of cycles of units per scheduling is the same
and equal to the number of the cycle of peak load units (i.e.,
5). For -day scheduling, is equal to . Therefore, each

TABLE II
UNIT COMMITMENT SCHEDULE FOR 24 h

solution consists of variables for -day scheduling
and presents the operation schedule of units for hours.
Table I gives the configuration of for ten-unit power system
and Table II lists the unit commitment schedule for 24 h.

B. Initial Population of SFLA

The generation of the initial population of SFLA is discussed
in this section. The duration of the unit operation first cycle,

, is initialized so that the unit continues the operating mode
(ON/OFF) of the last cycle of the previous scheduling day
for at least as many hours as required to satisfy the minimum
up/down-time constraints [17]:

if
if

(10)
where is the duration of last cycle of the previous scheduling
day.

For , the operation duration of the th cycle of unit ,
, is calculated considering the minimum up and down-time
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constraints of the unit, the UC horizon and the duration of the
prior cycles of the unit’s operation.

For , cycle is in ON mode with duration deter-
mined, as follows:

if
otherwise.

(11)
For , cycle is in OFF mode with duration deter-

mined by the following equation:

if
otherwise

(12)
where expresses the scheduling time remaining after al-
location of the first cycles and calculated by the following
equation:

(13)

Considering randomly generated cycle durations, the entire
scheduling period is covered with the first operating
cycles in some cases. Therefore, the remaining
cycles are assigned to zero. Then, the remaining positions of
for unit are filled with zeros.

After determination of the initial population, the unit min-
imum up and down-time constraints are automatically satisfied.
Therefore, the penalty functions should not be used in the SFLA
fitness function [17].

C. Leaping of Worst Solution

In each memeplex, the solution with the worst fitness, ,
is adjusted by adding a vector
to it. This approach leads to the sum of values of for each
unit, which is not equal to the scheduling horizon. Therefore, the
operating cycles of each unit of new should be corrected, as
follows:

(14)

The function generates a random number between 0
and 1. As a result, the parameters of new are not integer. But
in the UC problem, parameters should be only integer. There-
fore, the parameters of new must be converted to integer
numbers, as follows:

(15)

while is a new solution with integer parameters. It should be
noted that function will change the values of parameters
of new . Therefore, the sum of the values of for each unit
is not equal to the scheduling horizon. The duration of the last
nonzero cycle of each unit should be changed, by using the
following equation:

(16)

D. Satisfying Minimum Up and Down-Time Constraints

After generation of the new solution, the minimum up and
down-time constraints are checked without using any penalty
function. Suppose that the unit in cycle was in operation less
than its minimum up/down-times. In order to satisfy the time
constraint, first, the minimum up/down-time constraint of the
cycle should be considered. In this case, the duration of the
cycle will be equal to the minimum up/down-time. Then, the
operation of the cycle should be changed so that the sum of

for the unit become equal to the scheduling horizon. This
procedure is presented in the following paragraphs.

The duration of the operation first cycle of unit is checked
with respect to the duration of the last cycle of the previous
scheduling day and minimum up and down-time constraints of
unit .

For , if , then the duration
of cycles 1 and 2 of unit are changed, as follows:

(17)

For , if , then the duration
of cycles 1 and 2 of unit are changed, as follows:

(18)

The duration of cycles of unit are checked
considering the minimum up and down-time constraint of unit
.

For , if , then the duration of cycles and
of unit are changed, as follows:

(19)

For , if , then the duration of the cycles
and of unit are changed, as follows:

(20)

It should be noted that after leaping the worst solution and
satisfying time constraints, an economic dispatch (ED) should
be carried out in each hour of scheduling horizon for on-state
units. Then, the fitness function will be calculated.

E. Fitness Function Computation

The objective function of SFLA has two terms. The first
term is the total operation cost over scheduling horizon and
the second term is the penalty function that penalizing the
violation of system constraints. All the generators are assumed
to be connected to the same bus supplying the total system
demand. Therefore, the network constraints are not considered.
In the first step, an ED should be performed for the scheduling
horizon. It is an important part of UC [3]. Its goal is to minimize
the total generation cost of a power system for each hour while
satisfying constraints. The penalty functions of reserve and
generation constraints are used to solve ED for the scheduling
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TABLE III
OPERATOR DATA FOR TEN-UNIT SYSTEM

TABLE IV
LOAD DEMAND FOR 24 h

horizon. As written in (21), a quadratic polynomial with coeffi-
cients , , and is used to model the fuel cost function of
the generation of in the th unit at the th hour:

(21)

The calculated power of each unit from ED is used to
calculate the fitness of each solution in the UC problem.

The start-up/shutdown costs are calculated as follows,
respectively:

(22)

(23)

The start-up cost depends on the instant that the unit has been
switched off prior to start-up

if
if

(24)

The total operation cost over the scheduling horizon is ex-
pressed by the following equation:

(25)

The penalty function has two terms. The first term is used to
penalize sPinning reserve constraint violations modeled by (26).
The second term is used to penalize excessive capacity by (27):

(26)

(27)

Fig. 4. Convergence of SFLA.

where depends on the maximum operating cost of the system
over the scheduling period [17], as follows:

(28)

where is a constant number. The overall objective of SFLA is
to minimize the following fitness function subject to a number
of system and unit constraints:

(29)

where is equal to .

V. SIMULATION RESULTS

A. One-Day Scheduling

The SFLA has been tested on the ten-, 20-, 40-, 60-, 80-, and
100-unit systems over a scheduling period of 24 h. The data of a
ten-unit system and load are listed in Tables III and IV, respec-
tively [12]. For the 20-unit system, the data of ten-unit system
have been duplicated and the load data doubled. The same pro-
cedure has been applied to after test system. The sPinning re-
serve is assumed to be 10% of the load demand.
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TABLE V
OPERATION COSTS AND SCHEDULE FOR 24 h

TABLE VI
COMPARISON OF BEST RESULTS OBTAINED BY DIFFERENT METHODS

The main parameters of SFLA have been selected as sug-
gested in [34]. The SFLA has an initial population of 200 solu-
tions, a set of 20 memeplexes, and ten generations within each
memeplex (before shuffling).

The developed SFLA program has been carried out on a Pen-
tium IV 2-GHz PC with a 512 Mbyte RAM (in MATLAB).

Considering the simulation results, it can be said that the op-
timal solution is obtained for 12th to 16th shuffling iteration for
ten-unit system. Fig. 4 shows the high speed of convergence rate
of SFLA for four runs for ten-unit system.

The result of the generation scheduling of the best solution of
SFLA for ten-unit system is given in Table V.

Table VI lists the best solution of UC of ten-unit system ob-
tained by SFLA, GA [12], discrete PSO (DPSO) [22], and hy-
brid PSO (HPSO) [23]. It is obvious that the total cost obtained
by SFLA is less than that of other methods.

EAs have a stochastic nature and in different cases do not con-
verge to the same solution. Therefore, the average of different
cases is calculated for each problem. In the proposed method,
the population size and the number of memeplexes are fixed for
different test cases. In Table VII, the averages of the result of ten
tests determined by SFLA have been compared with the results
of LR, ICGA, and BF algorithm reported in [12], [17], and [30],

TABLE VII
COMPARISON OF OPERATION COST OF SFLA WITH OTHER METHODS

respectively. It is obvious that the SFLA has satisfactory results
in comparison with other methods.

The execution time is an important factor, too. This point has
not been reported for LR [12] and ICGA [17]. But for the BF
algorithm, the same PC has been used [30].

The execution times of SFLA and BF algorithms [30] for dif-
ferent systems have been compared in Table VIII and Fig. 5. It is
obvious that the execution time of SFLA increases semi-linearly
with increase of the size of UC problem. For all cases, SFLA is
better than BF.

B. Seven-Day Scheduling

In the seven-day UC problem, the duration of the first cycle in
each day depends on the duration of the last cycle of the previous
day. For seven-day scheduling case, the data given in Tables III
and IV have been used. Also, the daily load factor for seven days
is listed in Table IX. For each hour, ED is carried out considering
the corresponding load factor.

The operating cost of ten up to 100 unit systems for a
seven-day scheduling period is compared with the result of
the BF algorithm [30] in Table X. It is shown that the SFLA
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TABLE VIII
COMPARISON OF EXECUTION TIMES OF SFLA WITH BF

Fig. 5. Execution times for BF algorithm and SFLA.

TABLE IX
LOAD FACTOR OF EACH DAY

TABLE X
COMPARISON OF OPERATION COST FOR SEVEN-DAY SCHEDULING

results in lower costs as compared to the BF algorithm in the
seven-day scheduling period.

VI. CONCLUSION

This paper has proposed a new evolutionary algorithm known
as SFLA to solve the UC problem. The combination of the local
search with information exchange of groups results in perfor-
mance improvement of SFLA. In the UC problem, the minimum
up and down-time constraints have been considered during gen-
erating the feasible solutions. Therefore, there is no need to use
the penalty functions method.

The efficiency of the proposed algorithm has been studied
considering periods of one-day and seven-day scheduling for
ten up to 100-unit systems. The proposed method has been com-
pared with other methods. The simulation results show that the
computation times and production costs of SFLA are less than
other algorithms such as LR, GA, PSO, and BF.
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